
Reed-Solomon Decoding for Non-Experts

Sarah Helmbrecht

May 2023

Abstract

Reed-Solomon codes are an important topic in many introductory coding theory courses. While
defining them and explaining their applications are approachable topics for computer science students,
decoding algorithms tend to be too complicated to teach in university courses. In this paper, we discuss
a decoding algorithm introduced by Maria Bras-Amorós that is intended to be appropriate for college
students.

1 Introduction

Transmission and storage can introduce distortions and errors into data. Error control codes are used to
detect and correct these errors. Error control codes work by sending some redundancy along with the original
data. This redundancy does increase the cost of data transmission, and the aim of coding theory is to create
codes that maintain a low transmission cost while having good correction capacity. Coding theory also aims
to design algorithms that allow receivers to decode the original data.

Reed-Solomon codes are a powerful method for preventing corruption of data. Better techniques have
since been developed, but Reed-Solomon codes are still the most universal error control codes. Most new
techniques are heavily based on Reed-Solomon codes.

In her paper ”A Decoding Approach to Reed-Solomon Codes from Their Definition,” Maria Bras-Amorós
introduces a decoding approach for Reed-Solomon codes that is intended to be digestible to non-experts [1].
In this paper, we will walk through the bulk of the content of Bras-Amorós’s paper, adding additional ex-
planations and commentary with the intention of making Reed-Solomon decoding even more approachable.

Section 2 will provide some background on the mathematics that are required to understand Reed-
Solomon codes and the decoding algorithm presented by Bras-Amorós. This includes basic information about
fields, vectors and vector spaces, matrices, and polynomials. Section 3 will move into background information
that is more specific to coding theory, mirroring Bras-Amorós’s section entitled ”Some Background on Coding
Theory.” In Section 4, we will define Reed-Solomon codes from four different perspectives and provide relevant
theorems and lemmas. Section 5 will establish the new decoding approach on which Bras-Amorós’s central
thesis rests. We will omit the proofs of many of the theorems and lemmas that are stated, focusing instead on
applications and examples. The definitions, lemmas, and examples in Sections 3, 4, and 5 will be primarily
drawn from Bras-Amorós’s paper, although additional explanations, comments, and steps will be added.

2 Background

A field is a set endowed with operations + and ·, which satisfy the properties of additive and multiplicative
associativity, commutativity, identities, and inverses. A number q ∈ Z is prime if and only if q > 1 and the
only positive integers that divide q are q and 1. Applying a modulus modq to a number means to find the
number 0 ≤ modq ≤ q − 1 such that modq is the remainder of the number divided by q [3].

1

A vector space is a subspace of the field Rn that satisfies the properties of additive commutativity,
additive associativity, zero element, additive inverse, distributivity, and multiplicative identity. An element
of a vector space is called a vector, a quantity with both magnitude and direction [2].

The dot product of two vectors u⃗ = (u0, u1, . . . , un−1), v⃗ = (v0, v1, . . . , vn−1) ∈ Fn
q is the scalar

u⃗ · v⃗ = u0v0 + u1v1 + . . .+ un−1vn−1 ∈ Fq.

A matrix is a rectangular array of numbers. A k × n matrix has k rows and n columns. A matrix can
be used to represent a linear system of equations, where each row represents an equation and each column
represents a variable. Matrices can be manipulated using the three Elementary Row operations, which in-
clude multiplying a row by a nonzero constant, switching any two rows, and adding a constant multiple of
one row to another row.

To solve a matrix A, we can get it into echelon form, where every row of A that consists entirely of
zeroes lies at the bottom of the matrix, and in each row of A that contains a nonzero element, the first
nonzero element (leading entry) lies to the right of the leading entry of the preceding row. We can get A
into echelon form using Gaussian elimination:

1. Locate the first column of A that has a nonzero element.

2. If the first entry in this column is 0, then switch the first row of A with a row where the corresponding
entry is nonzero.

3. Replace the entries below this nonzero entry with zeroes by adding multiples of the first row to lower
rows.

4. Perform steps 1-3 on lower right matrix A1.

5. Repeat this cycle of steps until an echelon matrix is obtained.

The determinant of a k × k matrix A = [aij] is detA = a11A11 + a12A12 + . . .+ a1kA1k.

If and only if the determinant of a square matrix A is nonzero, A has an inverse A−1 such that
A × A−1 = A−1 × A = I, where I is the identity matrix with ones along the diagonal and zeroes else-
where.

A polynomial of degree k is a function of the form P (x) = a0 + a1x+ a2x
2 + . . .+ akx

k.

To add or subtract two polynomials, you add or subtract the coefficients of like terms. For example,
(2x2 + 3x+ 2) + (3x2 − 5x− 1) = (2 + 3)x2 + (3 + (−5))x+ (2 + (−1)) = 5x2 − 2x+ 1 [6].

To multiply two polynomials, you multiply every term of one polynomial with every term of the other,
then add the results. For example, (2x+3y)× (4x− 5y) = 2x(4x− 5y)+ 3y(4x− 5y) = 2x(4x)+ 2x(−5y)+
3y(4x) + 3y(−5y) = 8x2 − 10xy + 12xy − 15y2 = 8x2 + 2xy − 15y2.

To divide two polynomials, you can use long division. For example, to solve (6x2 + 10x− 24)/(2x+ 6) :
3x − 4

2x+ 6
)

6x2 + 10x− 24
− 6x2 − 18x

− 8x− 24
8x+ 24

0

[4].

Any polynomial function of degree k − 1 is uniquely defined by any k points that lay on the function.
For example, the polynomial f(x) = 2+3x−5x2+x3 includes the 4 points (−1, 7), (0, 2), (1, 1), and (2,−4).
This gives the following set of 4 linear equations:

2

a0 + a1(−1) + a2(−1)2 + a3(−1)3 = −7
a0 + a1(0) + a2(0)

2 + a3(0)
3 = 2

a0 + a1(1) + a2(1)
2 + a3(1)

3 = 1
a0 + a1(2) + a2(2)

2 + a3(2)
3 = −4

This can be converted into a matrix, and we can use Gaussian elimination to solve it:
1 −1 1 −1 −7
1 0 0 0 2
1 1 1 1 1
1 2 4 8 −4

 =


1 −1 1 −1 −7
0 1 −1 1 9
0 2 0 2 8
0 3 3 9 3

 =


1 0 0 0 2
0 1 −1 1 9
0 0 2 0 −10
0 0 6 6 −24



=


1 0 0 0 2
0 1 −1 1 9
0 0 1 0 −5
0 0 6 6 −24

 =


1 0 0 0 2
0 1 −1 1 9
0 0 1 0 −5
0 0 0 6 6

 =


1 0 0 0 2
0 1 0 1 4
0 0 1 0 −5
0 0 0 1 1



=


1 0 0 0 2
0 1 0 0 3
0 0 1 0 −5
0 0 0 1 1


This yields a0 = 2, a1 = 3, a2 = −5, and a3 = 1. This gives our original polynomial 2 + 3x− 5x2 + x3. This
shows that the 4 points uniquely define a polynomial of degree 3 [7].

A monic polynomial is a polynomial whose term with the highest power has a coefficient of 1 [5].

3 Coding Theory

The transmission alphabet Fq is a finite field of symbols. These symbols correspond to the data that
is sent and received during data transmission. A prime field Fq is identified by the ring {0, 1, . . . , q − 1},
equipped with + and · modulo q. If Fq is a prime field, then there exists a primitive element α ∈ Fq such
that all of the powers of α with exponent smaller than q− 1 are different. We can rewrite the prime field Fq

in terms of the primitive element: Fq = {0, 1, α, α2, . . . , αq−2}.

A linear code C of length n over Fq is a vector subspace of Fn
q . Each vector c ∈ C is called a code word.

The dimension k of C is the dimension of the subspace C ⊆ Fn
q . The linear code C contains qk code words c.

To encode a word c ∈ C of k symbols from Fq, we multiply c by the generator matrix G of the linear
code C. G is a k×n matrix whose k rows are a set of vectors that generate the linear code C. The generator
matrix is not unique, so a generator matrix that has been transformed using elementary row operations still
generates C. All code words c ∈ C are linear combinations of the rows of G.

The dual code of C is the vector subspace C⊥ = {v ∈ Fn
q |v · c = 0,∀c ∈ C}. C⊥ is a linear code

with length n (same as C) and dimension n − k. A matrix H that generates the dual code C⊥ is called a
parity-check matrix of C. We can rewrite the linear code C as C = {c ∈ Fn

q |c · h = 0,∀ rows h ∈ H}.

The Hamming distance between two code words of the same length n is the number of positions in
which their symbols differ. Given an input vector u of the same length n as the code, decoding algorithms
aim to output a code word c ∈ C while minimizing the Hamming distance between u and c. The weight of a
word is its Hamming distance from 0⃗. This represents the number of nonzero symbols that the word contains.

The minimum distance d of a linear code C can be defined in three ways:

1. The minimum Hamming distance between two words of C.

2. The minimum weight of nonzero words of C.

3

3. The minimum number of linearly dependent columns of the parity-check matrix H of C.

The minimum distance a code represents its capacity to correct errors. If at most ⌊d−1
2 ⌋ errors are added to

a code word c ∈ C, then ⌊d−1
2 ⌋ errors can be corrected.

The Singleton bound states that for a linear code with length n, minimum distance d, and dimension
k, we have k ≤ n − d + 1. Maximum distance separable (MDS) codes are those that attain equality,
so k = n− d+ 1.

Our final background definition is of Vandermonde matrices. Given primitive elements α1, α2, . . . , αn ∈
Fq, the Vandermonde matrix of α1, α2, . . . , αn of order r is defined as:

Vr(α1, α2, . . . , αn) =


1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

. . .
...

αr−1
1 αr−1

2 . . . αr−1
n

 .

The determinant of Vn(α1, α2, . . . , αn) satisfies |V (α1, α2, . . . , αn)| =
∏

1≤i<j≤n(αj−αi). Therefore, Vn(α1, α2, . . . , αn)
has an inverse matrix if and only if αi ̸= αj ,∀1 ≤ i < j ≤ n.

Consider the alphabet F7 = 0, 1, 2, 3, 4, 5, 6. This set has addition and multiplication modulo 7.

Since 7 is a prime number, Fq is a prime field. This means that it must have a primitive element. α = 5
is a primitive element of Fq because 50mod7 = 1, 51mod7 = 5, 52mod7 = 4, 53mod7 = 6, 54mod7 = 2, and
55mod7 = 3, all of which are different.

The matrix G =

(
1 1 1 1 1 1
1 5 4 6 2 3

)
is a generator matrix of a code C ∈ F7. C has length n = 6 and

dimension k = 2. Suppose that the code word we want to encode is c = 110256 ∈ C. We split C into blocks
of k = 2, and multiply each block by G :(
1 1

)(1 1 1 1 1 1
1 5 4 6 2 3

)
=

(
2 6 5 0 3 4

)
(
0 2

)(1 1 1 1 1 1
1 5 4 6 2 3

)
=

(
2 3 1 5 4 6

)
(
5 6

)(1 1 1 1 1 1
1 5 4 6 2 3

)
=

(
4 0 1 6 3 2

)
After encoding, C will be represented by the code 265034231546401632.

Consider code words 265034 and 231546. Both begin with the digit 2, but have different digits in all 5
other positions. Therefore, their Hamming distance is 5. Now consider code words 111111 and 265034. They
have different digits in all 6 positions, so their Hamming distance is 6. Any code word c ∈ C is a linear
combination of the two rows of G : c = x1

(
1 1 1 1 1 1

)
+ x2

(
1 5 4 6 2 3

)
. So any vector

c ∈ C is either constant or all its elements are different, meaning that any two words in C have a Hamming
distance of either 5 or 6. This means that the minimum distance of C is 5.

Now, we can look at how Reed-Solomon encoding works. We have a transmission alphabet Fn
q , and we

want to transmit k of its nonzero elements. We find a polynomial of degree less than k that takes the values
of the elements that we are transmitting when evaluated at k. Then, we add the redundancy to the original
elements. This redundancy consists of the evaluation of the polynomial at the remaining q − 1− k nonzero
values of Fn

q .

4

4 Defining Reed-Solomon Codes

We will define Reed-Solomon codes in four different ways in order to provide a basis for proving a new
decoding approach. We will also provide relevant theorems and lemmas to support these definitions.

Definition 4.1. Let q be a prime power, meaning that q is a power of a prime number. Let Fq be the field
with q elements. Let α be a primitive element of Fq. Then Fq = {0, 1, α, α2, . . . , αq−2}. Let n = q − 1 be the
length of code word C. The Reed-Solomon code over Fq of dimension k, RSq,α(k), is the linear code of Fn

q

with generator matrix:

G =


1 1 1 . . . 1
1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...
1 αk−1 α(k−1)2 . . . α(k−1)(n−1)

 .

For example, we have already shown that α = 5 is a primitive element of F7, the prime field with q = 7.
Then F7 = {0, 1, 5, 52, 53, 54, 55} = {0, 1, 5, 4, 6, 2, 3}. Let n = 7 − 1 = 6 be the length of code word C.
Then the Reed-Solomon code RS7,5(2) over F7 of dimension k = 2 is the code C with generator matrix

G =

(
1 1 1 1 1 1
1 5 52 53 54 55

)
=

(
1 1 1 1 1 1
1 5 4 6 2 3

)
.

Definition 4.2. The Reed-Solomon code over Fq of dimension k, RSq,α(k), is the linear code of Fn
q with

parity check matrix H defined as follows:

H =


1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...
1 αn−k α(n−k)2 . . . α(n−k)(n−1)

 .

For example, the Reed-Solomon code over F7 of dimension k = 2, RS7,5(2), is the code C with parity-
check matrix defined using the primitive element α = 5 :

H =


1 5 52 53 54 55

1 52 54 56 58 510

1 53 56 59 512 515

1 54 58 512 516 520

 =


1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6
1 2 4 1 2 4

 .

Lemma 4.3. The minimum distance of RSq,α(k) is n− k + 1. Therefore, RSq,α(k) is an MDS code.

For example, we have already stated that the minimum distance of RS7,5(2) is 5. Since n = 6 and k = 2,
the minimum distance of RS7,5(2) is equal to n− k + 1 = 6− 2 + 1 = 5.

Definition 4.4. Consider the set Fq[x]
<k of polynomials with coefficients in Fq and of degree less than k.

An element a ∈ Fq[x]
<k has the form a = a0 + a1x + . . . ak−1x

k−1, with ai ∈ Fq. The Reed-Solomon code
over Fq and of dimension k, RSq,α(k), is the set {(a(1), a(α), a(α2), . . . , a(αn−1))|a ∈ Fq[x]

<k}.

For example, we have already shown that the code 110256 is encoded as 265034, 231546, and 401632 using

the generator matrix G =

(
1 1 1 1 1 1
1 5 4 6 2 3

)
. 265034 is the encoding of the block 11. 11 corresponds to

the polynomial 1 + x. If we evaluate 1 + x at 50, 51, 52, 53, 54, and 55, which are equal to 1, 5, 4, 6, 2, and 3,
then we get the following:
At x = 50 = 1, 1 + x = 1 + 1 = 2.
At x = 51 = 5, 1 + x = 1 + 5 = 6.
At x = 52 = 4, 1 + x = 1 + 4 = 5.
At x = 53 = 6, 1 + x = 1 + 6 = 0.
At x = 54 = 2, 1 + x = 1 + 2 = 3.

5

At x = 55 = 3, 1 + x = 1 + 3 = 4.
This gives us the same code, 265034, that we computed using the generator matrix.
The same can be done for encoding the block 02 to get the code 231546. 02 corresponds to the interpolation
polynomial 0 + 2x = 2x.
At x = 50 = 1, 2x = 2(1) = 2.
At x = 51 = 5, 2x = 2(5) = 3.
At x = 52 = 4, 2x = 2(4) = 1.
At x = 53 = 6, 2x = 2(6) = 5.
At x = 54 = 2, 2x = 2(2) = 4.
At x = 55 = 3, 2x = 2(3) = 6.
Again, we can do the same to get 401632 from the block 56. 56 corresponds to the interpolation polynomial
5 + 6x.
At x = 50 = 1, 5 + 6(1) = 5 + 6 = 4.
At x = 51 = 5, 5 + 6(5) = 5 + 2 = 0.
At x = 52 = 4, 5 + 6(4) = 5 + 3 = 1.
At x = 53 = 6, 5 + 6(6) = 5 + 1 = 6.
At x = 54 = 2, 5 + 6(2) = 5 + 5 = 3.
At x = 55 = 3, 5 + 6(3) = 5 + 4 = 2.
We can use this process to pass the elements of Fq to an interpolation polynomial to get the Reed-Solomon
encoding of a code word.

Next, we need to know how to reliably find the interpolation polynomial for a vector. For each vec-
tor u = (u0, u1, . . . , un−1) ∈ Fn

q , there is a polynomial fu of degree at most n − 1 such that fu(α
i) =

ui,∀i ∈ {0, 1, . . . , n − 1}. Let fi be the interpolation polynomial of the i−th standard basis vector. Then

fi =
∏n−1

j=0,j ̸=i
x−αj

αi−αj . Then we can compute fu =
∑n−1

i=1 uifi. The polynomial fu is unique because if

fu = a0 + a1x+ . . .+ an−1x
n−1, then a0, a1, . . . , an−1 are the solution of the linear system:

1 1 1 . . . 1
1 α α2 . . . α(n−1)

1 α2 α4 . . . α2(n−1)

...
...

. . .
...

1 αn−1 α2(n−1) . . . α(n−1)(n−1)




a0
a1
...

an−1

 =


u0

u1

...
un−1

 .

The matrix of this system has a Vandermonde structure and is invertible. This means that for any vector u ∈
Fn
q , there exists some unique f ∈ Fq[x] of degree less than n such that u = (f(1), f(α), f(α2), . . . , f(αn−1)).

For example, in the field F7, we can use the formula fi =
∏n−1

j=0,j ̸=i
x−αj

αi−αj with α = 5 to get the following:

f0 =
∏j=5

j=1
x−5j

1−5j = 6x5 + 6x4 + 6x3 + 6x2 + 6x+ 6,

f1 =
∏j=5

j=0,j ̸=1
x−5j

5−5j = 2x5 + 3x4 + x3 + 5x2 + 4x+ 6,

f2 =
∏j=5

j=0,j ̸=2
x−5j

4−5j = 3x5 + 5x4 + 6x3 + 3x2 + 5x+ 6,

f3 =
∏j=5

j=0,j ̸=3
x−5j

6−5j = x5 + 6x4 + x3 + 6x2 + x+ 6,

f4 =
∏j=5

j=0,j ̸=4
x−5j

2−5j = 5x5 + 3x4 + 6x3 + 5x2 + 3x+ 6,

f5 =
∏j=5

j=0,j ̸=5
x−5j

3−5j = 4x5 + 5x4 + x3 + 3x2 + 2x+ 6.

So for any vector u ∈ F6
7, we can compute the coefficients of fu as the product of u times the following

matrix:
6 6 6 6 6 6
6 4 5 1 3 2
6 5 3 6 5 3
6 1 6 1 6 1
6 3 5 6 3 5
6 2 3 1 5 4

 .

So the coefficients of the polynomial interpolating u = (4, 2, 1, 6, 3, 2) can be found as follows:

6


6 6 6 6 6 6
6 4 5 1 3 2
6 5 3 6 5 3
6 1 6 1 6 1
6 3 5 6 3 5
6 2 3 1 5 4




4
2
1
6
3
2

 =


3
0
3
2
6
4

 .

This means that the coefficients of the interpolation polynomial, in increasing order, are (3, 0, 3, 2, 6, 4). The
interpolation polynomial is therefore 3 + 3x2 + 2x3 + 6x4 + 4x5.

Code word checking: a vector u⃗ = (u0, u1, . . . , un−1) ∈ Fn
q is a code word if and only if the degree of its

interpolation polynomial fu is less than k.

For example, if we want to determine if 265034 is a code word of RS7,5(2), we must first find its interpo-
lation polynomial. We do this the same way we did above:
6 6 6 6 6 6
6 4 5 1 3 2
6 5 3 6 5 3
6 1 6 1 6 1
6 3 5 6 3 5
6 2 3 1 5 4




2
6
5
0
3
4

 =


1
1
0
0
0
0

 .

Therefore, 265034 has an interpolation polynomial of x+ 1. This has a degree of less than k = 2, so 265034
is a code word of RS7,5(2).
Now consider the word 025606. We find its interpolation polynomial the same way:
6 6 6 6 6 6
6 4 5 1 3 2
6 5 3 6 5 3
6 1 6 1 6 1
6 3 5 6 3 5
6 2 3 1 5 4




0
2
5
6
0
6

 =


2
2
2
2
6
0

 .

Therefore, 025606 has an interpolation polynomial of 6x4 + 2x3 + 2x2 + 2x + 2. This has degree of greater
than k = 2, so 025606 is not a code word of RS7,5(2).

Definition 4.5. Consider the set Fq[x]
<n of all polynomials with coefficients in Fq of degree less than n.

An element u ∈ Fq[x]
<n is of the form u = u0 + u1x + . . . + un−1x

n−1 with ui ∈ Fq. The Reed-Solomon
code over Fq of dimension k, RSq,α(k), is the set of vectors u = (u0, . . . , un−1) in Fn

q s.t. the polynomial

u0 + u1x+ . . .+ un−1x
n−1 vanishes at αj ,∀j with 1 ≤ j ≤ n− k.

Code word checking: a vector u⃗ = (u0, u1, . . . , un−1) ∈ Fn
q is a code word if and only if u(αi) = 0 for all

i such that 1 ≤ i ≤ n− k.

For example, in order to check whether the word 342650 is a code word of RS7,5(2), we evaluate its
associated polynomial u(x) = 3 + 4x+ 2x2 + 6x3 + 5x4 at 5, 52, 53, and 54 :
u(51) = u(5) = 3 + 4(5) + 2(52) + 6(53) + 5(54) = 3 + 4(5) + 2(4) + 6(6) + 5(2) = 3 + 6 + 1 + 1 + 3 = 0.
u(52) = u(4) = 3 + 4(4) + 2(42) + 6(43) + 5(44) = 3 + 4(4) + 2(2) + 6(1) + 5(4) = 3 + 2 + 4 + 6 + 6 = 0.
u(53) = u(6) = 3 + 4(6) + 2(62) + 6(63) + 5(64) = 3 + 4(6) + 2(1) + 6(6) + 5(1) = 3 + 3 + 2 + 1 + 5 = 0.
u(54) = u(2) = 3 + 4(2) + 2(22) + 6(23) + 5(24) = 3 + 4(2) + 2(4) + 6(1) + 5(2) = 3 + 1 + 1 + 6 + 3 = 0.
Therefore, 342650 is a code word of RS7,5(2).

Lemma 4.6. Suppose that α is a primitive element of a finite field of q elements and let n = q − 1. The

polynomials fi =
∏n−1

j=0,j ̸=i
x−αj

αi−αj satisfy fi = −(αixn−1 + α2ixn−2 + α3ixn−3 + . . .+ α(n−1)ix+ αni).

Lemma 4.7. The inverse of the map from Fn to Fn defined by (v0, . . . , vn−1) 7→ (v(α0), v(α), v(α2), . . . , v(αn−1))
is the map (u0, . . . , un−1) 7→ (−u(αn),−u(αn−1),−u(αn−2), . . . ,−u(α)), where v(β) is the evaluation of
v0 + v1x+ . . .+ vn−1x

n−1 at β and u(β) is the evaluation of u0 + u1x+ . . .+ un−1x
n−1 at β.

7

As an example of Lemma 4.7, the word (u0, u1, u2, u3, u4, u5) = (5, 4, 0, 1, 2, 0) has polynomial u =
5 + 4x+ x3 + 2x4. Evaluating the polynomial at 51, 52, 53, 54, 55, and 56, we get the following:
u(51) = u(5) = 5 + 4(5) + 53 + 2(54) = 5 + 4(5) + 6 + 2(2) = 5 + 6 + 6 + 4 = 0,
u(52) = u(4) = 5 + 4(4) + 43 + 2(44) = 5 + 4(4) + 1 + 2(4) = 5 + 2 + 1 + 1 = 2,
u(53) = u(6) = 5 + 4(6) + 63 + 2(64) = 5 + 4(6) + 6 + 2(1) = 5 + 3 + 6 + 2 = 2,
u(54) = u(2) = 5 + 4(2) + 23 + 2(24) = 5 + 4(2) + 1 + 2(2) = 5 + 1 + 1 + 4 = 4,
u(55) = u(3) = 5 + 4(3) + 33 + 2(34) = 5 + 4(3) + 6 + 2(4) = 5 + 5 + 6 + 1 = 3,
u(56) = u(1) = 5 + 4(1) + 13 + 2(14) = 5 + 4(1) + 1 + 2(1) = 5 + 4 + 1 + 2 = 5.
By Lemma 4.7, it should be the case that if v(x) = −5−3x−4x2−2x3−2x4 = 2+4x+3x2+5x3+5x4, then
u = (v(1), v(5), v(52), v(53), v(54), v(55)). To verify this, we show that (v(1), v(5), v(52), v(53), v(54), v(55)) =
(5, 4, 0, 1, 2, 0) :
v(50) = v(1) = 2 + 4(1) + 3(12) + 5(13) + 5(14) = 2 + 4(1) + 3(1) + 5(1) + 5(1) = 2 + 4 + 3 + 5 + 5 = 5,
v(51) = v(5) = 2 + 4(5) + 3(52) + 5(53) + 5(54) = 2 + 4(5) + 3(4) + 5(6) + 5(2) = 2 + 6 + 5 + 2 + 3 = 4,
v(52) = v(4) = 2 + 4(4) + 3(42) + 5(43) + 5(44) = 2 + 4(4) + 3(2) + 5(1) + 5(4) = 2 + 2 + 6 + 5 + 6 = 0,
v(53) = v(6) = 2 + 4(6) + 3(62) + 5(63) + 5(64) = 2 + 4(6) + 3(1) + 5(6) + 5(1) = 2 + 3 + 3 + 2 + 5 = 1,
v(54) = v(2) = 2 + 4(2) + 3(22) + 5(23) + 5(24) = 2 + 4(2) + 3(4) + 5(1) + 5(2) = 2 + 1 + 5 + 5 + 3 = 2,
v(55) = v(3) = 2 + 4(3) + 3(32) + 5(33) + 5(34) = 2 + 4(3) + 3(2) + 5(6) + 5(4) = 2 + 5 + 6 + 2 + 6 = 0.
This demonstrates that Lemma 4.7 holds for the word (u0, u1, u2, u3, u4, u5) = (5, 4, 0, 1, 2, 0).

Lemmas 4.6 and 4.7 are important because they establish the connection between the coefficients of an
interpolation polynomial over a finite field and the evaluation of the polynomial at all the nonzero elements
of the finite field.

5 A New Decoding Approach

Now that we have defined Reed-Solomon codes in several ways, we have the tools to approach the decoding
of words. We will discuss decoding using interpolation polynomials, as established in Definition 4.4. Our
proofs, however, will use Definition 4.5, focusing on polynomial evaluation.

First, let Fq[x]
<d be the set of all polynomials with coefficients in the alphabet Fq and degree strictly less

than d. Let Fq[x]
<d
≥d′ be the set of all polynomials with coefficients in the alphabet Fq of degree less than d

and greater than or equal to d′.

Consider receiving the message u ∈ Fn
q with interpolation polynomial fu. In order to decode u into a word

c, we want to find c ∈ RSq,α(k) such that the Hamming distance between u and c is minimized. We know
that all words c ∈ RSq,α(k) are the evaluation of polynomials of degree less than k at the nonzero elements
of Fq. Therefore, we can decode u, by finding the interpolation polynomial of c. This will be a polynomial
gc ∈ Fq[x]

<k such that fu − gc has a maximum number of nonzero roots.

We can split the terms of fu into those that have degree less than k and those that have degree greater
than or equal to k. Let fu = hu+gu for unique polynomials hu and gu. Let hu ∈ Fq[x]

<n
≥k , meaning that hu is

made up of the terms with degree greater than or equal to k and less than n. Let gu ∈ Fq[x]
<k, meaning that

gu is made up of the terms with degree less than k. Consider a polynomial ghu
that maximizes the number

of nonzero roots of fu = hu + gu. Then, for any g′ ∈ Fq[x]
<k, the number of nonzero roots of hu + ghu

is
greater than or equal to the number of nonzero roots of hu + g′. Then, the interpolation polynomial gc of c
satisfies the equation gc = gu − ghu .

Let e be the minimum weight word such that u − e ∈ RSq,α(k). Then e = u − c, and the interpolation
polynomial of e is fe = fu − gc = hu + ghu

.

Now, we define the set of polynomials Λ = {λ ∈ Fq[x] : λ(hu + g) vanishes at all Fq\{0}, for some
g ∈ Fq[x]

k}. Since we know that xn−1 =
∏

γ∈Fq\{0}(x−γ), we can also rewrite this as Λ = {λ ∈ Fq[x] : (x
n−1)

divides λ(hu + g) for some g ∈ Fq[x]
<k}. Since xn − 1 belongs to Λ, we know that Λ is a nonempty set.

8

Recall that a monic polynomial is one whose term with the highest power has a coefficient of 1.

Theorem 5.1. Let λu be a monic polynomial with minimum degree among the polynomials in Λ. For a
polynomial g ∈ Fq[x]

<k, if (xn − 1) divides λu(hu + g), then the number of nonzero roots of hu + g is greater
than or equal to the number of nonzero roots of hu + g′ for any g′ ∈ Fq[x]

<k.

Lemma 5.2. Let λu be a monic polynomial with minimum degree among the polynomials in Λ. The non-
leading coefficients of λu give a solution to the following linear system:

u(α) u(α2) . . . u(αt)
u(α2) u(α3) . . . u(αt+1)

...
...

. . .
...

u(αn−k−t) u(αn−k−t+1) . . . u(αn−k−1)




l0
l1
...

lt−1

 =


−u(αt+1)
−u(αt+2)

...
−u(αn−k)

 .

Lemma 5.3. Let t be the weight of a minimum weight vector e ∈ Fn
q such that u−e ∈ RSq,α(k) and consider

the linear system:
u(α) u(α2) . . . u(αt′)

u(α2) u(α3) . . . u(αt′+1)
...

...
. . .

...

u(αn−k−t′) u(αn−k−t′+1) . . . u(αn−k−1)




l0
l1
...

lt′−1

 =


−u(αt′+1)

−u(αt′+2)
...

−u(αn−k)

 .

1. If t ≤ n−k
2 and t′ = t, then the linear system has a unique solution. This solution can be found as a

solution to the following square system:
u(α) u(α2) . . . u(αt)
u(α2) u(α3) . . . u(αt+1)

...
...

. . .
...

u(αt) u(αt+1) . . . u(α2t−1)




l0
l1
...

lt−1

 =


−u(αt+1)
−u(αt+2)

...
−u(α2t)

 .

2. If t ≤ n−k
2 and t′ = t, then the unique solution to the system satisfies l0 ̸= 0.

3. If t ≤ n−k
2 and t′ < t, then the system has no solution.

Now, we are ready to establish a decoding algorithm for an RSq,α(k) code, where n = q − 1. We assume
an input of u ∈ Fn

q .

1. Let t be the minimum integer such that

rank


u(α) . . . u(αt)
u(α2) . . . u(αt+1)

...
. . .

...
u(αn−k−t) . . . u(αn−k−t)

 = rank


u(α) . . . u(αt+1)
u(α2) . . . u(αt+2)

...
. . .

...
u(αn−k−t . . . u(αn−k)

 .

When t = 0, the first matrix is the null matrix, so we consider its rank to be 0.

2. Solve the linear system
u(α) u(α2) . . . u(αt)
u(α2) u(α3) . . . u(αt+1)

...
...

. . .
...

u(αt) u(αt+1) . . . u(α2t−1)




l0
l1
...

lt−1

 =


−u(αt+1)
−u(αt+2)

...
−u(α2t)


for l0, . . . , lt−1. Let λu = xt + lt−1x

t−1 + . . .+ l1x+ l0.

3. Obtain as in Lemma 4.7 the interpolation polynomial fu of u. Let du be the degree of u.

4. Let ξ0, . . . , ξdu+t be the coefficients of λufu. So λufu = ξ0 + ξ1x + . . . + ξdu+tx
du+t. Let gc = fu −

(xn−1)(ξn+ξn+1x+...+ξdu+tx
du+t−n)

λu
.

5. The output is (gc(1), gc(α), gc(α
2), . . . , gc(α

n−1)).

9

Theorem 5.4. Suppose we received u ∈ Fn
q . Let t be the weight of a minimum weight vector e ∈ Fn

q such

that u− e ∈ RSq,α(k). If t ≤ n−k
2 , then the previous algorithm outputs u− e.

Let’s look at some examples of how we can use the algorithm to decode transmissions. We’ll use the
same code C = RS7,5(2) that we have used previously. Suppose we receive the three code words u = 421632,
v = 342650, and w = 025606.
u has associated polynomial 4+ 2x+ x2 +6x3 +3x4 +2x5. First, we multiply our parity-check matrix H by
the vector u.

u(α)
u(α2)
u(α3)
u(α4)

 =


1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6
1 2 4 1 2 4



4
2
1
6
3
2

 =


3
1
5
4

 .

We have rank

3
1
5

 = rank

3 1
1 5
5 4

 . This indicates that t = 1. In context, t = 1 means that there is exactly

one error in the code.
The system u(α)l0 = −u(α2) gives 3l0 = −1 = 6, indicating that l0 = 2. This means that λu = x+ 2.
Next, we compute fu :

(
4 2 1 6 3 2

)

6 6 6 6 6 6
6 4 5 1 3 2
6 5 3 6 5 3
6 1 6 1 6 1
6 3 5 6 3 5
6 2 3 1 5 4

 =
(
3 0 3 2 6 4

)
.

Therefore, fu = 4x5 + 6x4 + 2x3 + 3x2 + 3.
fu · λu = (4x5 + 6x4 + 2x3 + 3x2 + 3)(x+ 2) = 4x6 + 6x2 + 3x+ 6.

Then ξ6 = 4, so gc = (4x5 + 6x4 + 2x3 + 3x2 + 3) − 4(x6−1)
x+2 = (4x5 + 6x4 + 2x3 + 3x2 + 3) − (4x5 + 6x4 +

2x3 + 3x2 + x+ 5) = 6x+ 5.
So our output is (gc(1), gc(5), gc(4), gc(6), gc(2), gc(3)) = (6(1)+5, 6(5)+5, 6(4)+5, 6(6)+5, 6(2)+5, 6(3)+5) =
(6 + 5, 2 + 5, 3 + 5, 1 + 5, 5 + 5, 4 + 5) = (4, 0, 1, 6, 3, 2).

Next, let’s decode v = 342650 with polynomial 3+4x+2x2+6x3+5x4. First, we multilpy our parity-check
matrix H by the vector v.

v(α)
v(α2)
v(α3)
v(α4)

 =


1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6
1 2 4 1 2 4



3
4
2
6
5
0

 =


0
0
0
0

 .

Since this results in the null matrix, there is no error and our output is (3, 4, 2, 6, 5, 0).

Next, let’s decode w = 025606 with polynomial 2x+5x2+6x3+6x5. First, we multiply our parity-check
matrix H by the vector w.

w(α)
w(α2)
w(α3)
w(α4)

 =


1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6
1 2 4 1 2 4



0
2
5
6
0
6

 =


0
1
5
5

 .

We have rank

(
0 1
1 5

)
= rank

(
0 1 5
1 5 5

)
= 2. This indicates that t = 2, meaning that there are exactly

two errors in the code.

10

The system

(
0 1
1 5

)(
l0
l1

)
=

(
−5
−5

)
=

(
2
2

)
has solution l0 = 6, l1 = 2. This means that λw = x2 + 2x+ 6.

Next, we compute fw :

(
0 2 5 6 0 6

)

6 6 6 6 6 6
6 4 5 1 3 2
6 5 3 6 5 3
6 1 6 1 6 1
6 3 5 6 3 5
6 2 3 1 5 4

 =
(
2 2 2 2 6 0

)
.

Therefore, fw = 6x4 + 2x3 + 2x2 + 2x+ 2.
fw · λw = (6x4 + 2x3 + 2x2 + 2x+ 2)(x2 + 2x+ 6) = 6x6 + 4x3 + 4x2 + 2x+ 5.

Then ξ6 = 6, so gc = (6x4+2x3+2x2+2x+2)− 6(x6−1)
x2+2x+6 = (6x4+2x3+2x2+2x+2)−(6x4−5x3−5x2+5x−1) =

4x+ 3.
So our output is (gc(1), gc(5), gc(4), gc(6), gc(2), gc(3)) = (4(1)+3, 4(5)+3, 4(4)+3, 4(6)+3, 4(2)+3, 4(3)+3) =
(4 + 3, 6 + 3, 2 + 3, 3 + 3, 1 + 3, 5 + 3) = (0, 2, 5, 6, 4, 1).

6 Conclusion

Maria Bras-Amorós concludes her paper with a comparison of the algorithm that she proposed to the
Peterson-Gorenstein-Zierler Algorithm. This paper will not provide such an in-depth comparison. The key
takeaway, however, is that Bras-Amorós’s algorithm is much simpler, and is still fast when the number of
errors is small. As the number of errors grows, Bras-Amorós’s algorithm is not much slower than the more
complex Peterson-Gorenstein-Zierler Algorithm.

Bras-Amorós’s algorithm is approachable to non-experts with a relatively small amount of background
information on coding theory. The definitions and theorems provided in this paper are enough to understand
how the algorithm works. Teaching coding theory to university students is a daunting task, but Bras-
Amorós’s algorithm takes an important step towards making code more accessible.

7 References

[1] Bras-Amorós, M. (2018). A Decoding Approach to Reed-Solomon Codes from Their Definition. The
American Mathematical Monthly, 125.

[2] Edwards, C. H., Penney, D. E., & Calvis, D. (2020). Differential equations & Linear Algebra.
Pearson Education Limited.

[3] Irani, S. (n.d.). Introduction to Discrete Mathematics. zyBooks.

[4] Long division polynomial - definition, method, long division with monomials, Binomials. Cuemath.
(n.d.). Retrieved April 25, 2023, from https://www.cuemath.com/algebra/long-division-of-polynomials/

[5] Monic polynomial. Math is Fun. (n.d.). Retrieved April 25, 2023, from https://www.mathsisfun.com/definitions/monic-
polynomial.html

[6] Polynomials - what are polynomials? definition and examples. Cuemath. (n.d.). Retrieved April 25,
2023, from https://www.cuemath.com/algebra/polynomials/

[7] Reed-solomon error correcting codes from the bottom up. Electronics etc... (2022, August 7). Retrieved
April 25, 2023, from https://tomverbeure.github.io/2022/08/07/Reed-Solomon.html

11

