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Chapter 2: Solving Linear Equations Az = b

Sarah Helmbrecht

1 Systems of Equations
Definition 1.1. A linear system in the variables x1,...,x, is a list of equations of the form
a1r1 + asxo + - -+ + apxr, = b,

where ay,...,a,,b are constants. An assignment of numbers to the variables x1,...,x, is a solution if the assignment
satisfies each of the equations. The solution set is the collection of all solutions. Solving the system means finding the
solution set.

Proposition 1.2. A linear system of the form
a1121 + a2 + -+ A1 Tn = by
21T + Q22T + -+ - + A2p Ty = bo
Am1%1 + AGmaT2 + -+ + AppTn = bm

can be expressed in matrix notation as AX = b, where

aiy a2 - Gin z1 by

a1 @ ccr Agn | | %2 S| be
A= , T = , and b=

Am1 Am2 e Amn Tn bm

2 Elimination

Definition 2.1. We call the following operations elementary row operations (EROs):

1. Multiply all entries in a row by a monzero number.

2. Add a scalar multiple of one row to another row.

3. Swap two rows.
Theorem 2.2. EROs preserve the set of solutions to a linear system.
Definition 2.3. Two matrices are called row equivalent if one can be obtained from the other through EROs.
Definition 2.4. A system of equations is called inconsistent if it has no solution. It is consistent otherwise.
Algorithm 2.5. (Solving Linear Systems) Suppose we are given a system of m equations in n unknowns:

a1121 + a12%2 + - + A1 Ty = by

21T + G22T2 + -+ - + a2p Ty = by

Am1%1 + AmaT2 + - - + AppTn = bm

This system can be written in matriz form as:

ai1 aiz2 Q1n x by
a1 Gz - G2n | |72 bo
Am1 Am2 e Amn Tn bm



This system can be written in augmented form as:

ail a2 - A1n by
a1 ag2 - a2n bo
Am1 Am?2 T Amn bm

Nezxt, we can use elimination (via EROs) to solve the system.

3 Existence and Uniqueness of Solutions

Theorem 3.1. If A7 = b is a system of n equations for n unknowns, then AZ = b can have exactly one solution T, no

solutions, or infinitely many solutions.

1. There is exactly one solution when all the columns of A are independent. In this case, the only solution to AxX = 0 is

Z=0, and A has an inverse matriz A~

2. There is no solution (inconsistent) when B is not a linear combination of the columns of A. In other words, b is not in

the column space of A.

3. There are infinitely many solutions to AZ = 0 when the columns of A are not all independent.

4 Matrix Operations

Definition 4.1. (Matrix Addition) If A and B are n x m matrices, then

a1 a2 - Qin bii bz -+ bin ain +bi1 aiz +bio

agy Qg2 - A2p bar b2 -+ Do as1 + bay a2 + b2
A+B=| . T T+ T T =

Am1 Am2 e Amn bml bm2 e bmn Am1 + bml Am2 + bm2

Definition 4.2. (Scalar Multiplication) If A is an n x m matriz and c s a scalar, then

ail a2 - A1n caq1 cayg - CQ1n

a21 a2 -+ G2n Caz; Cazz -+ Ca2p
cA=c| . . . . =

aAml Am2 - Omn Cam1 Cam2 -+  CaAmn

a1n + bln
aop + bop

Definition 4.3. (Matriz Multiplication) If A is an n X m matriz and B is an m X p matriz, then the ijth entry of AB

is the ith row of A times the jth column of B:

(AB)ij = ai1bij + ajoboj + - - + ainby;.

Proposition 4.4. Suppose A is m x n, and B and C are of appropriate sizes to make matrix multiplication possible. Then:

1. A(BC) = (AB)C.

2. (B+C)A=BA+CA.
3. ¢(AB) = A(cB).

4. AL, = A.

5. A(B+C) = AB + AC.
6. ¢(AB) = (cA)B.

7. InA= A

Note that matriz multiplication is not commutative.



5 Elimination and Permutation Matrices

Definition 5.1. An elimination matriz E;; adds a multiple l;; of equation j to equation i for any matriz it is multiplied

by.

Algorithm 5.2. (Elimination Matrices) To construct an elimination matriz E;; that adds a multiple l;; of equation j to
equation i, take the identity matriz and replace the zero in position ij with l;;.

Definition 5.3. A permutation matrix P;; swaps rows i and j for any matriz it is multiplied by.

Algorithm 5.4. (Permutation Matrices) To construct a permutation matriz P;; that swaps rows i and j, take the identity
matriz and swap rows i and j.

Proposition 5.5. (Properties of Permutation Matrices)

1.

6

A permutation matriz P has a one in every row and a one in every column, and all other entries are zero.

2. Let P be an n X n permutation matriz. Then the n ones appear in n different rows and n different columns of P.
3. The product of two permutation matrices is a permutation matric.

/.
5

. If A is an invertible n X n matriz, there is a permutation matriz P to order its rows in advance so that elimination on

The inverse of a permutation matriz is also a permutation matriz.

PA results in no zeros in the pivot positions.

Inverse Matrices

Definition 6.1. Suppose A is an n x n matriz. Then A is invertible if there exists an inverse matriz A~! such that

AAT = A"TA=1T.

Proposition 6.2. (Properties of Inverses) Let A be an n x n matriz.

1.

The inverse exists if and only if elimination produces n pivots (allowing row exchanges). Elimination solves AT = b
without explicitly using A~1.

The inverse of a matriz A is unique. If BA =1 and AC = I, then by the associative law, B(AC) = (BA)C = BI =
IC=DB=C.

If A is invertible, then the one and only solution to AT = bis = A"1b. To see this, take AZ = b= A"1AT = A~ 1b =
It =A"1b= 7= A""h

Suppose there is a nonzero vector & such that AT = 0. Then A has dependent columns, so A is not invertible.
If A is invertible, then AZ = 0 has only the zero solution ¥ = A~10 = 0.
A square matriz is invertible if and only if its columns are independent.

-1
A 2 X 2 matriz Z b 1s invertible if and only if the number ad — bc # 0. In this case, Z} = ﬁ [_dc ab} .

d

1
~ o 9

The number ad — be is the determinant of the matriz. A matriz A is invertible if det(A) # 0.
d1 * *
0 d2 e *
. An upper triangular matriz has an inverse provided no diagonal entries d; are zero. If A = . , then
0 0 - d,
T * *
1
O diz *
Ail = .
: 1
0 0 Lo

Algorithm 6.3. (Inverses) To find the inverse A=t of an invertible n x n matriz A, first augment A with the n x n identity
matriz to obtain [A ‘ I] . Next, use elimination (via EROs) until the left-hand side is the identity matriz. Then we have

(1] A~



Theorem 6.4. If A and B are both invertible n x n matrices, then the inverse of AB is (AB)™! = B~1A~L

Proposition 6.5. Even if A and B are both invertible n X n matrices, we cannot guarantee that the matriz (A + B) is
invertible.

Algorithm 6.6. (Inverses of Elimination Matrices) To find the inverse Eigl of an elimination matriz E;; that has l;;
in position ij, we simply replace the entry l;; with —l;;.

Theorem 6.7. (Inverses of Permutation Matrices) The inverse of a permutation matriz is its transpose.

7 The Transpose of a Matrix

Definition 7.1. The transpose of an m x n matriz A is the n x m matriz AT whose rows are the columns of A. In other
words, the ij-th entry of AT is aj;.

Proposition 7.2. (Properties of the Transpose)
1. (A+B)T = AT + BT.
2. (AB)T = BT AT
3. (ATY=L = (A~ HT.
7T

Proposition 7.3. Let Z,y € R". We can write their dot product as T -y = & 1.

8 LU Factorization

Definition 8.1. The LU factorization of an n X n matriz A is its decomposition into the product A = LU, where L is an
n X n lower triangular matriz and U is an n X n upper triangular matriz.

Algorithm 8.2. (LU Factorization) To find the LU factorization of an n x n matriz A,

1. Use elimination (via EROs) on A to obtain an upper triangular matriz U. If U has nonzero pivots, continue. Otherwise,
see Algorithm 8.7 to find PA = LU instead.

Take note of the elimination matrices that performed each step of the elimination process.
Find the inverse of each elimination matriz.

Let L equal the product of the inverses of the elimination matrices.

SAEE NI

Finally, A= LU.

Algorithm 8.3. (Solving Systems using LU Factorization) To solve the system AZ = b given LU factorization A = LU,
1. Solve the lower triangular system Lij = gfor i using forward substitution.
2. Solve the upper triangular system UZ = ¢ for & using back substitution.

Definition 8.4. The LDU factorization of an n X n matriz A is its decomposition into the product A = LDU, where L
is an n X n lower triangular matriz, D is an n X n diagonal matriz, and U is an n X n upper triangular matriz.

Algorithm 8.5. (LDU Factorization) To find the LDU factorization of an n X n matriz A,
1. Find the LU factorization A = LU wusing Algorithm 8.2.
2. Let D be the diagonal matrix that has the diagonal entries of U on its diagonal, and zeros everywhere else.
3. Divide each row of U by its diagonal entry to obtain an upper triangular matriz U'.
4. Finally, A= LDU’.

Proposition 8.6. If Algorithm 8.2 fails to produce an upper triangular matriz U that has nonzero pivots, we cannot find
A = LU, but we can find PA = LU.

Algorithm 8.7. (PA=LU Factorization)

1. Apply a permutation matriz P to A such that elimination on A results in nonzero pivots.



Use elimination (via EROs) on PA to obtain an upper triangular matriz U that has nonzero pivots.
Take note of the elimination matrices that performed each step of the elimination process.
Find the inverse of each elimination matriz.

Let L equal the product of the inverses of the elimination matrices.

ST T o TSR S

Finally, PA = LU.

9 Symmetric Matrices

Definition 9.1. A matriz S is symmetric if ST = S.
Proposition 9.2. (Properties of Symmetric Matrices)
1. If S is a symmetric matriz, then S~ is also symmetric.
2. If A is an n x m matriz, then the matrices AAT and AT A are symmetric.

3. If A is a symmetric n x n matriz, then the LDU factorization of A is A= LDLT.



