
Chapter 2: Solving Linear Equations Ax⃗ = b⃗

Sarah Helmbrecht

1 Systems of Equations

Definition 1.1. A linear system in the variables x1, . . . , xn is a list of equations of the form

a1x1 + a2x2 + · · ·+ anxn = b,

where a1, . . . , an, b are constants. An assignment of numbers to the variables x1, . . . , xn is a solution if the assignment
satisfies each of the equations. The solution set is the collection of all solutions. Solving the system means finding the
solution set.

Proposition 1.2. A linear system of the form
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

can be expressed in matrix notation as Ax⃗ = b⃗, where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , x⃗ =


x1

x2

...
xn

 , and b⃗ =


b1
b2
...
bm

 .

2 Elimination

Definition 2.1. We call the following operations elementary row operations (EROs):

1. Multiply all entries in a row by a nonzero number.

2. Add a scalar multiple of one row to another row.

3. Swap two rows.

Theorem 2.2. EROs preserve the set of solutions to a linear system.

Definition 2.3. Two matrices are called row equivalent if one can be obtained from the other through EROs.

Definition 2.4. A system of equations is called inconsistent if it has no solution. It is consistent otherwise.

Algorithm 2.5. (Solving Linear Systems) Suppose we are given a system of m equations in n unknowns:
a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

.

This system can be written in matrix form as:
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1

x2

...
xn

 =


b1
b2
...
bm

 .
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This system can be written in augmented form as:
a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm

 .

Next, we can use elimination (via EROs) to solve the system.

3 Existence and Uniqueness of Solutions

Theorem 3.1. If Ax⃗ = b⃗ is a system of n equations for n unknowns, then Ax⃗ = b⃗ can have exactly one solution x⃗, no
solutions, or infinitely many solutions.

1. There is exactly one solution when all the columns of A are independent. In this case, the only solution to Ax⃗ = 0⃗ is
x⃗ = 0⃗, and A has an inverse matrix A−1.

2. There is no solution (inconsistent) when B⃗ is not a linear combination of the columns of A. In other words, b⃗ is not in
the column space of A.

3. There are infinitely many solutions to Ax⃗ = 0⃗ when the columns of A are not all independent.

4 Matrix Operations

Definition 4.1. (Matrix Addition) If A and B are n×m matrices, then

A+B =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

+


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn

 =


a11 + b11 a12 + b12 · · · a1n + b1n
a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

 .

Definition 4.2. (Scalar Multiplication) If A is an n×m matrix and c is a scalar, then

cA = c


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 =


ca11 ca12 · · · ca1n
ca21 ca22 · · · ca2n
...

...
. . .

...
cam1 cam2 · · · camn

 .

Definition 4.3. (Matrix Multiplication) If A is an n×m matrix and B is an m× p matrix, then the ijth entry of AB
is the ith row of A times the jth column of B:

(AB)ij = ai1b1j + ai2b2j + · · ·+ ainbnj .

Proposition 4.4. Suppose A is m× n, and B and C are of appropriate sizes to make matrix multiplication possible. Then:

1. A(BC) = (AB)C.

2. (B + C)A = BA+ CA.

3. c(AB) = A(cB).

4. AIn = A.

5. A(B + C) = AB +AC.

6. c(AB) = (cA)B.

7. ImA = A.

Note that matrix multiplication is not commutative.
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5 Elimination and Permutation Matrices

Definition 5.1. An elimination matrix Eij adds a multiple lij of equation j to equation i for any matrix it is multiplied
by.

Algorithm 5.2. (Elimination Matrices) To construct an elimination matrix Eij that adds a multiple lij of equation j to
equation i, take the identity matrix and replace the zero in position ij with lij .

Definition 5.3. A permutation matrix Pij swaps rows i and j for any matrix it is multiplied by.

Algorithm 5.4. (Permutation Matrices) To construct a permutation matrix Pij that swaps rows i and j, take the identity
matrix and swap rows i and j.

Proposition 5.5. (Properties of Permutation Matrices)

1. A permutation matrix P has a one in every row and a one in every column, and all other entries are zero.

2. Let P be an n× n permutation matrix. Then the n ones appear in n different rows and n different columns of P.

3. The product of two permutation matrices is a permutation matrix.

4. The inverse of a permutation matrix is also a permutation matrix.

5. If A is an invertible n× n matrix, there is a permutation matrix P to order its rows in advance so that elimination on
PA results in no zeros in the pivot positions.

6 Inverse Matrices

Definition 6.1. Suppose A is an n× n matrix. Then A is invertible if there exists an inverse matrix A−1 such that

AA−1 = A−1A = I.

Proposition 6.2. (Properties of Inverses) Let A be an n× n matrix.

1. The inverse exists if and only if elimination produces n pivots (allowing row exchanges). Elimination solves Ax⃗ = b⃗
without explicitly using A−1.

2. The inverse of a matrix A is unique. If BA = I and AC = I, then by the associative law, B(AC) = (BA)C ⇒ BI =
IC ⇒ B = C.

3. If A is invertible, then the one and only solution to Ax⃗ = b⃗ is x⃗ = A−1⃗b. To see this, take Ax⃗ = b⃗ ⇒ A−1Ax⃗ = A−1⃗b ⇒
Ix⃗ = A−1⃗b ⇒ x⃗ = A−1⃗b.

4. Suppose there is a nonzero vector x⃗ such that Ax⃗ = 0⃗. Then A has dependent columns, so A is not invertible.

5. If A is invertible, then Ax⃗ = 0⃗ has only the zero solution x⃗ = A−10⃗ = 0⃗.

6. A square matrix is invertible if and only if its columns are independent.

7. A 2× 2 matrix

[
a b
c d

]
is invertible if and only if the number ad− bc ̸= 0. In this case,

[
a b
c d

]−1

= 1
ad−bc

[
d −b
−c a

]
.

The number ad− bc is the determinant of the matrix. A matrix A is invertible if det(A) ̸= 0.

8. An upper triangular matrix has an inverse provided no diagonal entries di are zero. If A =


d1 ∗ · · · ∗
0 d2 · · · ∗
...

...
. . .

...
0 0 · · · dn

 , then

A−1 =


1
d1

∗ · · · ∗
0 1

d2
· · · ∗

...
...

. . .
...

0 0
... 1

dn

 .

Algorithm 6.3. (Inverses) To find the inverse A−1 of an invertible n×n matrix A, first augment A with the n×n identity
matrix to obtain

[
A I

]
. Next, use elimination (via EROs) until the left-hand side is the identity matrix. Then we have[

I A−1
]
.
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Theorem 6.4. If A and B are both invertible n× n matrices, then the inverse of AB is (AB)−1 = B−1A−1.

Proposition 6.5. Even if A and B are both invertible n × n matrices, we cannot guarantee that the matrix (A + B) is
invertible.

Algorithm 6.6. (Inverses of Elimination Matrices) To find the inverse E−1
ij of an elimination matrix Eij that has lij

in position ij, we simply replace the entry lij with −lij .

Theorem 6.7. (Inverses of Permutation Matrices) The inverse of a permutation matrix is its transpose.

7 The Transpose of a Matrix

Definition 7.1. The transpose of an m× n matrix A is the n×m matrix AT whose rows are the columns of A. In other
words, the ij-th entry of AT is aji.

Proposition 7.2. (Properties of the Transpose)

1. (A+B)T = AT +BT .

2. (AB)T = BTAT .

3. (AT )−1 = (A−1)T .

Proposition 7.3. Let x⃗, y⃗ ∈ Rn. We can write their dot product as x⃗ · y⃗ = x⃗T y⃗.

8 LU Factorization

Definition 8.1. The LU factorization of an n× n matrix A is its decomposition into the product A = LU, where L is an
n× n lower triangular matrix and U is an n× n upper triangular matrix.

Algorithm 8.2. (LU Factorization) To find the LU factorization of an n× n matrix A,

1. Use elimination (via EROs) on A to obtain an upper triangular matrix U. If U has nonzero pivots, continue. Otherwise,
see Algorithm 8.7 to find PA = LU instead.

2. Take note of the elimination matrices that performed each step of the elimination process.

3. Find the inverse of each elimination matrix.

4. Let L equal the product of the inverses of the elimination matrices.

5. Finally, A = LU.

Algorithm 8.3. (Solving Systems using LU Factorization) To solve the system Ax⃗ = b⃗ given LU factorization A = LU,

1. Solve the lower triangular system Ly⃗ = b⃗ for y⃗ using forward substitution.

2. Solve the upper triangular system Ux⃗ = y⃗ for x⃗ using back substitution.

Definition 8.4. The LDU factorization of an n × n matrix A is its decomposition into the product A = LDU, where L
is an n× n lower triangular matrix, D is an n× n diagonal matrix, and U is an n× n upper triangular matrix.

Algorithm 8.5. (LDU Factorization) To find the LDU factorization of an n× n matrix A,

1. Find the LU factorization A = LU using Algorithm 8.2.

2. Let D be the diagonal matrix that has the diagonal entries of U on its diagonal, and zeros everywhere else.

3. Divide each row of U by its diagonal entry to obtain an upper triangular matrix U ′.

4. Finally, A = LDU ′.

Proposition 8.6. If Algorithm 8.2 fails to produce an upper triangular matrix U that has nonzero pivots, we cannot find
A = LU, but we can find PA = LU.

Algorithm 8.7. (PA=LU Factorization)

1. Apply a permutation matrix P to A such that elimination on A results in nonzero pivots.
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2. Use elimination (via EROs) on PA to obtain an upper triangular matrix U that has nonzero pivots.

3. Take note of the elimination matrices that performed each step of the elimination process.

4. Find the inverse of each elimination matrix.

5. Let L equal the product of the inverses of the elimination matrices.

6. Finally, PA = LU.

9 Symmetric Matrices

Definition 9.1. A matrix S is symmetric if ST = S.

Proposition 9.2. (Properties of Symmetric Matrices)

1. If S is a symmetric matrix, then S−1 is also symmetric.

2. If A is an n×m matrix, then the matrices AAT and ATA are symmetric.

3. If A is a symmetric n× n matrix, then the LDU factorization of A is A = LDLT .
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