Chapter 2: Solving Linear Equations $A\vec{x} = \vec{b}$

Sarah Helmbrecht

1 Systems of Equations

Definition 1.1. A linear system in the variables x_1, \ldots, x_n is a list of equations of the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b,$$

where a_1, \ldots, a_n , b are constants. An assignment of numbers to the variables x_1, \ldots, x_n is a **solution** if the assignment satisfies each of the equations. The **solution set** is the collection of all solutions. Solving the system means finding the solution set.

Proposition 1.2. A linear system of the form

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

can be expressed in matrix notation as $A\vec{x} = \vec{b}$, where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \ and \ \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

2 Elimination

Definition 2.1. We call the following operations elementary row operations (EROs):

- 1. Multiply all entries in a row by a nonzero number.
- 2. Add a scalar multiple of one row to another row.
- 3. Swap two rows.

Theorem 2.2. EROs preserve the set of solutions to a linear system.

Definition 2.3. Two matrices are called row equivalent if one can be obtained from the other through EROs.
Definition 2.4. A system of equations is called inconsistent if it has no solution. It is consistent otherwise.
Algorithm 2.5. (Solving Linear Systems) Suppose we are given a system of m equations in n unknowns:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

This system can be written in matrix form as:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

This system can be written in augmented form as:

a_{11}	a_{12}	•••	a_{1n}	b_1	
a_{21}	a_{22}	•••	a_{2n}	b_2	
:	:	• .	:	:	
	•	•	•		
a_{m1}	a_{m2}	• • •	a_{mn}	b_m	

Next, we can use elimination (via EROs) to solve the system.

3 Existence and Uniqueness of Solutions

Theorem 3.1. If $A\vec{x} = \vec{b}$ is a system of *n* equations for *n* unknowns, then $A\vec{x} = \vec{b}$ can have exactly one solution \vec{x} , no solutions, or infinitely many solutions.

- 1. There is exactly one solution when all the columns of A are independent. In this case, the only solution to $A\vec{x} = \vec{0}$ is $\vec{x} = \vec{0}$, and A has an inverse matrix A^{-1} .
- 2. There is no solution (inconsistent) when \vec{B} is not a linear combination of the columns of A. In other words, \vec{b} is not in the column space of A.
- 3. There are infinitely many solutions to $A\vec{x} = \vec{0}$ when the columns of A are not all independent.

4 Matrix Operations

Definition 4.1. (Matrix Addition) If A and B are $n \times m$ matrices, then

$$A + B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}.$$

Definition 4.2. (Scalar Multiplication) If A is an $n \times m$ matrix and c is a scalar, then

4	$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$	$a_{12} \\ a_{22}$	 	$\begin{bmatrix} a_{1n} \\ a_{2n} \end{bmatrix}$	=	$\begin{bmatrix} ca_{11} \\ ca_{21} \end{bmatrix}$	$\begin{array}{c} ca_{12} \\ ca_{22} \end{array}$	· · · ·	$\begin{bmatrix} ca_{1n} \\ ca_{2n} \end{bmatrix}$	
cA = c	÷	÷	·	:		÷	:	·	÷	•
	a_{m1}	a_{m2}	• • •	a_{mn}		ca_{m1}	ca_{m2}	• • •	ca_{mn}	

Definition 4.3. (*Matrix Multiplication*) If A is an $n \times m$ matrix and B is an $m \times p$ matrix, then the ijth entry of AB is the *i*th row of A times the *j*th column of B:

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}.$$

Proposition 4.4. Suppose A is $m \times n$, and B and C are of appropriate sizes to make matrix multiplication possible. Then:

- 1. A(BC) = (AB)C.
- 2. (B+C)A = BA + CA.
- 3. c(AB) = A(cB).
- 4. $AI_n = A$.
- 5. A(B+C) = AB + AC.
- 6. c(AB) = (cA)B.
- 7. $I_m A = A$.

Note that matrix multiplication is not commutative.

5 Elimination and Permutation Matrices

Definition 5.1. An elimination matrix E_{ij} adds a multiple l_{ij} of equation j to equation i for any matrix it is multiplied by.

Algorithm 5.2. (Elimination Matrices) To construct an elimination matrix E_{ij} that adds a multiple l_{ij} of equation j to equation i, take the identity matrix and replace the zero in position ij with l_{ij} .

Definition 5.3. A permutation matrix P_{ij} swaps rows i and j for any matrix it is multiplied by.

Algorithm 5.4. (*Permutation Matrices*) To construct a permutation matrix P_{ij} that swaps rows i and j, take the identity matrix and swap rows i and j.

Proposition 5.5. (Properties of Permutation Matrices)

- 1. A permutation matrix P has a one in every row and a one in every column, and all other entries are zero.
- 2. Let P be an $n \times n$ permutation matrix. Then the n ones appear in n different rows and n different columns of P.
- 3. The product of two permutation matrices is a permutation matrix.
- 4. The inverse of a permutation matrix is also a permutation matrix.
- 5. If A is an invertible $n \times n$ matrix, there is a permutation matrix P to order its rows in advance so that elimination on PA results in no zeros in the pivot positions.

6 Inverse Matrices

Definition 6.1. Suppose A is an $n \times n$ matrix. Then A is *invertible* if there exists an *inverse* matrix A^{-1} such that

$$AA^{-1} = A^{-1}A = I.$$

Proposition 6.2. (*Properties of Inverses*) Let A be an $n \times n$ matrix.

- 1. The inverse exists if and only if elimination produces n pivots (allowing row exchanges). Elimination solves $A\vec{x} = \vec{b}$ without explicitly using A^{-1} .
- 2. The inverse of a matrix A is unique. If BA = I and AC = I, then by the associative law, $B(AC) = (BA)C \Rightarrow BI = IC \Rightarrow B = C$.
- 3. If A is invertible, then the one and only solution to $A\vec{x} = \vec{b}$ is $\vec{x} = A^{-1}\vec{b}$. To see this, take $A\vec{x} = \vec{b} \Rightarrow A^{-1}A\vec{x} = A^{-1}\vec{b} \Rightarrow I\vec{x} = A^{-1}\vec{b} \Rightarrow \vec{x} = A^{-1}\vec{b}$.
- 4. Suppose there is a nonzero vector \vec{x} such that $A\vec{x} = \vec{0}$. Then A has dependent columns, so A is not invertible.
- 5. If A is invertible, then $A\vec{x} = \vec{0}$ has only the zero solution $\vec{x} = A^{-1}\vec{0} = \vec{0}$.
- 6. A square matrix is invertible if and only if its columns are independent.
- 7. $A \ 2 \times 2 \ matrix \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if the number $ad bc \neq 0$. In this case, $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. The number ad bc is the **determinant** of the matrix. A matrix A is invertible if $\det(A) \neq 0$.
- 8. An upper triangular matrix has an inverse provided no diagonal entries d_i are zero. If $A = \begin{bmatrix} d_1 & * & \cdots & * \\ 0 & d_2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$, then

$$A^{-1} = \begin{bmatrix} \frac{1}{d_1} & * & \cdots & * \\ 0 & \frac{1}{d_2} & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \vdots & \frac{1}{d_n} \end{bmatrix}.$$

Algorithm 6.3. (Inverses) To find the inverse A^{-1} of an invertible $n \times n$ matrix A, first augment A with the $n \times n$ identity matrix to obtain $\begin{bmatrix} A \mid I \end{bmatrix}$. Next, use elimination (via EROs) until the left-hand side is the identity matrix. Then we have $\begin{bmatrix} I \mid A^{-1} \end{bmatrix}$.

Theorem 6.4. If A and B are both invertible $n \times n$ matrices, then the inverse of AB is $(AB)^{-1} = B^{-1}A^{-1}$.

Proposition 6.5. Even if A and B are both invertible $n \times n$ matrices, we cannot guarantee that the matrix (A + B) is invertible.

Algorithm 6.6. (Inverses of Elimination Matrices) To find the inverse E_{ij}^{-1} of an elimination matrix E_{ij} that has l_{ij} in position ij, we simply replace the entry l_{ij} with $-l_{ij}$.

Theorem 6.7. (Inverses of Permutation Matrices) The inverse of a permutation matrix is its transpose.

7 The Transpose of a Matrix

Definition 7.1. The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose rows are the columns of A. In other words, the *ij*-th entry of A^T is a_{ji} .

Proposition 7.2. (Properties of the Transpose)

- 1. $(A+B)^T = A^T + B^T$.
- 2. $(AB)^T = B^T A^T$.
- 3. $(A^T)^{-1} = (A^{-1})^T$.

Proposition 7.3. Let $\vec{x}, \vec{y} \in \mathbb{R}^n$. We can write their dot product as $\vec{x} \cdot \vec{y} = \vec{x}^T \vec{y}$.

8 LU Factorization

Definition 8.1. The *LU* factorization of an $n \times n$ matrix *A* is its decomposition into the product A = LU, where *L* is an $n \times n$ lower triangular matrix and *U* is an $n \times n$ upper triangular matrix.

Algorithm 8.2. (LU Factorization) To find the LU factorization of an $n \times n$ matrix A,

- 1. Use elimination (via EROs) on A to obtain an upper triangular matrix U. If U has nonzero pivots, continue. Otherwise, see Algorithm 8.7 to find PA = LU instead.
- 2. Take note of the elimination matrices that performed each step of the elimination process.
- 3. Find the inverse of each elimination matrix.
- 4. Let L equal the product of the inverses of the elimination matrices.
- 5. Finally, A = LU.

Algorithm 8.3. (Solving Systems using LU Factorization) To solve the system $A\vec{x} = \vec{b}$ given LU factorization A = LU,

- 1. Solve the lower triangular system $L\vec{y} = \vec{b}$ for \vec{y} using forward substitution.
- 2. Solve the upper triangular system $U\vec{x} = \vec{y}$ for \vec{x} using back substitution.

Definition 8.4. The *LDU* factorization of an $n \times n$ matrix A is its decomposition into the product A = LDU, where L is an $n \times n$ lower triangular matrix, D is an $n \times n$ diagonal matrix, and U is an $n \times n$ upper triangular matrix.

Algorithm 8.5. (LDU Factorization) To find the LDU factorization of an $n \times n$ matrix A,

- 1. Find the LU factorization A = LU using Algorithm 8.2.
- 2. Let D be the diagonal matrix that has the diagonal entries of U on its diagonal, and zeros everywhere else.
- 3. Divide each row of U by its diagonal entry to obtain an upper triangular matrix U'.
- 4. Finally, A = LDU'.

Proposition 8.6. If Algorithm 8.2 fails to produce an upper triangular matrix U that has nonzero pivots, we cannot find A = LU, but we can find PA = LU.

Algorithm 8.7. (PA=LU Factorization)

1. Apply a permutation matrix P to A such that elimination on A results in nonzero pivots.

- 2. Use elimination (via EROs) on PA to obtain an upper triangular matrix U that has nonzero pivots.
- 3. Take note of the elimination matrices that performed each step of the elimination process.
- 4. Find the inverse of each elimination matrix.
- 5. Let L equal the product of the inverses of the elimination matrices.
- 6. Finally, PA = LU.

9 Symmetric Matrices

Definition 9.1. A matrix S is symmetric if $S^T = S$.

Proposition 9.2. (Properties of Symmetric Matrices)

- 1. If S is a symmetric matrix, then S^{-1} is also symmetric.
- 2. If A is an $n \times m$ matrix, then the matrices AA^T and A^TA are symmetric.
- 3. If A is a symmetric $n \times n$ matrix, then the LDU factorization of A is $A = LDL^T$.