Chapter 1: Intro to Vectors

Sarah Helmbrecht

1 Vectors

Definition 1.1. A (column) vector is a list of real numbers arranged in a column. We write vectors with arrows over them, as in

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

where $x_1, x_2, \ldots, x_n \in \mathbb{R}$ are real numbers called the **components** of \vec{x} . An **n-dimensional vector** is a vector with n components.

Definition 1.2. The set of all n-dimensional vectors is n-dimensional Euclidean space, denoted \mathbb{R}^n .

Definition 1.3. (Vector addition) For any $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$, define

$$\begin{bmatrix} x_1\\x_2\\\vdots\\x_n \end{bmatrix} + \begin{bmatrix} y_1\\y_2\\\vdots\\y_n \end{bmatrix} = \begin{bmatrix} x_1+y_1\\x_2+y_2\\\vdots\\x_n+y_n \end{bmatrix}.$$

Definition 1.4. (Scalar multiplication) For any $x_1, \ldots, x_n, c \in \mathbb{R}$, define

$$c \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} cx_1 \\ cx_2 \\ \vdots \\ cx_n \end{bmatrix}.$$

Definition 1.5. Let $\vec{0}$ denote the zero vector, whose components are all zero:

$$\vec{0} = \begin{bmatrix} 0\\0\\\vdots\\0 \end{bmatrix},$$

where the number of components is in context. For example, if $\vec{0} \in \mathbb{R}^2$, then $\vec{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Definition 1.6. Let $(\vec{v_1}, \vec{v_2}, \dots, \vec{v_n})$ be a list of vectors in \mathbb{R}^m . A linear combination of $(\vec{v_1}, \vec{v_2}, \dots, \vec{v_n})$ is a vector of the form

 $c_1\vec{v_1} + c_2\vec{v_2} + \dots + c_n\vec{v_n}$

for some scalars $c_1, c_2, \ldots, c_n \in \mathbb{R}$, which are called the weights or coefficients.

2 Lengths and Dot Products

Definition 2.1. Let
$$\vec{x}, \vec{y} \in \mathbb{R}^n$$
, where $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$. The **dot product** $\vec{x} \cdot \vec{y}$ of \vec{x} and \vec{y} is given by

$$\vec{x} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Proposition 2.2. For all $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$ and scalars c,

- 1. $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$ (commutative).
- 2. $(\vec{x} + \vec{y}) \cdot \vec{z} = \vec{x} \cdot \vec{z} + \vec{y} \cdot \vec{z}$ (distributive over addition).
- 3. $(c\vec{x}) \cdot \vec{y} = c(\vec{x} \cdot \vec{y}).$
- 4. $\vec{x} \cdot \vec{x} \ge 0$.
- 5. $\vec{x} \cdot \vec{x} = 0$ if and only if $\vec{x} = \vec{0}$.

Definition 2.3. The length or norm of a vector $\vec{x} \in \mathbb{R}^n$ is given by

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

or equivalently, $\|\vec{x}\|^2 = \vec{x} \cdot \vec{x}$.

Proposition 2.4. For all $\vec{x}, \vec{y} \in \mathbb{R}^n$ and scalars c,

- 1. $\|\vec{x}\| \ge 0$.
- 2. $\|\vec{x}\| = 0$ if and only if $\vec{x} = \vec{0}$.
- 3. $||c\vec{x}|| = |c| \cdot ||\vec{x}||.$
- 4. $\|\vec{x} + \vec{y}\|^2 + \|\vec{x} \vec{y}\|^2 = 2(\|\vec{x}\|^2 + \|\vec{y}\|^2)$ (parallelogram law).
- 5. $\vec{x} \cdot \vec{y} = \frac{1}{4} (\|\vec{x} + \vec{y}\|^2 \|\vec{x} \vec{y}\|^2).$

Definition 2.5. The distance between two points $x, y \in \mathbb{R}^n$ is

$$dist(x,y) = \|y - x\|$$

This is just the length of the vector from x to y.

Definition 2.6. A vector $\vec{x} \in \mathbb{R}^n$ is a unit vector if $\|\vec{x}\| = 1$.

Definition 2.7. Let $\vec{x} \in \mathbb{R}^n$ be a nonzero vector. The unit vector in the direction of \mathbf{x} is the vector $\frac{\vec{x}}{\|\vec{x}\|}$.

Definition 2.8. Two vectors $\vec{x}, \vec{y} \in \mathbb{R}^n$ are orthogonal or perpendicular if $\vec{x} \cdot \vec{y} = 0$.

Proposition 2.9. (Cosine Formula) The angle θ between two nonzero vectors $\vec{x}, \vec{y} \in \mathbb{R}^n$ is given by:

$$\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|} = \cos \theta.$$

Theorem 2.10. (Cauchy-Schwarz Inequality) For all $\vec{x}, \vec{y} \in \mathbb{R}^n$,

 $|\vec{x} \cdot \vec{y}| \le \|\vec{x}\| \|\vec{y}\|.$

Proposition 2.11. (*Triangle Inequality*) For all $\vec{x}, \vec{y} \in \mathbb{R}^n$,

$$\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|.$$

3 Spans, Linear Dependence, and Linear Independence

Definition 3.1. Let $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_m}$ be a set of vectors in \mathbb{R}^n . The **span** of $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_m}$ is the set of all linear combinations of $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_m}$, and is denoted span $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_m}\}$.

In symbols: $span\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_m}\} = \{c_1\vec{v_1} + c_2\vec{v_2} + \dots + c_m\vec{v_m} : c_1, c_2, \dots, c_m \in \mathbb{R}\}.$

Definition 3.2. Suppose $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_m} \in \mathbb{R}^n$ and consider the equation

$$c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_m \vec{v_m} = \vec{0}$$

This equation always has the solution $c_1 = c_2 = \cdots = c_m = 0$, called the trivial solution.

- 1. If $c_1\vec{v_1} + c_2\vec{v_2} + \cdots + c_m\vec{v_m} = \vec{0}$ has only the trivial solution, then $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_m}\}$ is linearly independent.
- 2. If $c_1\vec{v_1} + c_2\vec{v_2} + \cdots + c_m\vec{v_m} = \vec{0}$ has nontrivial solutions, then $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_m}\}$ is linearly dependent.

Proposition 3.3. A set $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_m}\}$ of vectors in \mathbb{R}^n is **linearly dependent** if and only if one of the vectors is in the span of the others.

4 Matrices

Definition 4.1. A matrix is a rectangular array of numbers. We say a matrix is $m \times n$, i.e. "m by n" if it has m rows and n columns. If A is $m \times n$ with entries a_{ij} , then we write

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

A matrix is called **square** if it is $n \times n$.

Definition 4.2. The entries $a_{11}, a_{22}, a_{33}, \ldots$ are the **diagonal entries**, which form the **main diagonal** of the matrix. A **diagonal matrix** is a square matrix whose non-diagonal entries are all zeros.

Definition 4.3. The $n \times n$ identity matrix I_n is the diagonal matrix with all diagonal entries equal to 1. I_n is special because $I_n \vec{v} = \vec{v}$ for all $\vec{v} \in \mathbb{R}^n$.

Definition 4.4. The $m \times n$ zero matrix is the $m \times n$ matrix 0 with all zero entries.

Definition 4.5. The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose rows are the columns of A. In other words, the *ij*-th entry of A^T is a_{ji} .

Proposition 4.6. A linear combination of n vectors $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_n} \in \mathbb{R}^m$ can be expressed as an $m \times n$ matrix $A = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n} \end{bmatrix}$ multiplying a vector $\vec{x} \in \mathbb{R}^n$:

$$\begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \vec{v_1} + x_2 \vec{v_2} + \cdots + x_n \vec{v_n}$$